Tai absoliutu. Matematika pastatė šaldymo greičio ribojimo ženklą, galiausiai įrodė šimtmečio senumo dėsnį – nebent savo dispozicijoje turite amžinybę ir begalybę išteklių, absoliutaus nulio temperatūros pasiekti negalėsite.
1906 metais vokiečių chemikas Waltheris Nernstas suformulavo šilumos teoremą, teigiančią, kad idealiam kristalui pasiekus absoliutaus nulio tašką (0 kelvinų, -273,15°C), sistemos entropija irgi taps nulinė. Šis darbas 1920 metais pelnė jam Nobelio premiją chemijos srityje.
Ši taisyklė buvo kontroversiška, ir tokie mokslo sunkiasvoriai, kaip Albertas Einšteinas ir Maksas Plankas ją ginčijo ir teikė savo formuluotes. 1912 metais Nernstas apgynė savo versiją, pridurdamas nepasiekiamumo principą, kuriuo remiantis, absoliutus nulis yra fiziškai nepasiekiamas.
Apjungtos šios dvi taisyklės sudaro dabartinį trečiąjį termodinamikos dėsnį.
Bet kadangi ankstesnieji argumentai buvo sutelkti tik į konkrečius mechanizmus ar rėmėsi abejotinomis prielaidomis, kai kurie fizikai taip ir nebuvo įsitikinę jo teisingumu.
MATEMATINIS ĮRODYMAS
Dabar gi Jonathan Oppenheim ir Lluís Masanes iš UCL matematiškai išvedė nepasiekiamumo principą ir nubrėžė sistemos šalimo greičio ribas, taip sukurdami bendrą trečiojo dėsnio įrodymą.
„Kompiuterių moksle žmonės nuolat klausia šio klausimo: kiek užtruks viena sar kitas skaičiavimas?“ sako Oppenheimas. „Kaip kad skaičiavimo mašinos atlieka skaičiavimus, taip ir šaldymo mašinos šaldo sistemą.“ Taigi, jis ir Masanesas iškėlė klausimą, kiek laiko truktų atšalimas.
Apie aušinimą galima galvoti kaip apie žingsninį procesą: šiluma paimama iš sistemos ir išmetama į aplinką vėl ir vėl, ir sistema kaskart darosi šaltesnė. Kokia šalta ji tampa, priklauso nuo to, kiek darbo gali būti atliekama šilumos pašalinimui ir kokio dydžio yra rezervuaras, į kurį šiluma šalinama.
Naudodami kvantinės informacijos teorijoje naudojamą matematikos techniką, jie įrodė, kad jokia reali sistema negali pasiekti 0 kelvinų: tam reikėtų atlikti begalinį skaičių žingsnių.
Tačiau priartėti prie absoliutaus nulio įmanoma, ir Masanesas su Oppenheimu įvertino šaldymo žingsnius, nustatydami greičio ribas, kokio šaltumo gali tapti duotoji sistema per baigtinį laiką.
NEAPIBRĖŽTUMO PAŠALINIMAS
Kvantiniams skaičiavimams tobulėjant, vis svarbesnis tampa šaldymo kiekinis įvertinimas. Duomenų saugojimui, dalelėms kvantiniame kompiuteryje suteikiamos atitinkamos energijos būsenos; papildoma energija ir jos sukeliama šiluma daleles iš tų energijos būsenų stumia, ir taip saugomi duomenys sugadinami ar visai sunaikinami.
„Tai ne vien energijos šalinimas iš sistemos,“ sako Masanesas. „Taip pat pašalinamas ir neapibrėžtumas.“
Šiuo tyrimu nustatytos ribos daug mažiau griežtos, nei egzistuojantys technologiniai apribojimai: niekam nė iš tolo nėra pavykę pasiekti tokių temperatūrų ar šaldymo greičio ribų, kurias rado Masanesas ir Oppenheimas. Jie tikisi, kad technologijai tobulėjant, šios ribos taps praktiškai svarbios.
„Tai svarbus darbas – trečiasis termodinamikos dėsnis yra viena iš fundamentaliausių dabartinės fizikos problemų,“ pažymi Ronnie Kosloff iš Jeruzalės hebrajų universiteto. „Tai susieja termodinamiką, kvantų mechaniką, informacijos teoriją – čia susitinka daugelis dalykų.“
Žurnalo nuoroda: Nature Communications, DOI: 10.1038/ncomms14538